FIGURE College of Engineering

INTRODUCTION

Many mathematical and practical problems require elements of a set to be arranged in a way that satisfies specific conditions. Familiar examples include Sudoku, timetabling, scheduling, and resource distribution (Russell & Norvig, 2009). Such problems, called constraint-satisfaction problems (CSPs), are solved when values from a domain are assigned to variables in a way that does not violate a set of constraints. Because some CSPs are NP-complete (Bulatov, Krokhin, & Jeavons, 2000), no polynomial-time algorithm to solve the general constraint-satisfaction problem is known. In order to reduce the time required to solve large instances, an Ant Colony Optimization (ACO) algorithm called the MAX - MIN Ant System (*MMAS*) (Stützle & Hoos, 2000) was applied to combinatorial CSPs with focus on a specific CSP (the Costas-array problem, which remains open for most sizes $M \ge 30$).

BACKGROUND

Definition 1. A *constraint-satisfaction problem* (CSP) (Bulatov et al., 2000) is an ordered triple $\langle V, D, C \rangle$, where

- *V* is the set of *variables*
- *D* is the *domain*
- *C* is the set of *constraints*

Each constraint C_i is of the form $\langle s_i, \rho_i \rangle$, where s_i describes a tuple of variables $s_i : \{1, \dots, m_i\} \rightarrow V$ and ρ_i is an m_i -ary Boolean relation on $D, \rho_i \subseteq D^{m_i}$

A *solution* of the constraint-satisfaction problem $\langle V, D, C \rangle$ is a function $f: V \to D$ such that for all constraints $C_i = \langle s_i, \rho_i \rangle$, $f \circ s_i \in \rho_i$

Definition 2. A *Costas array* (Drakakis, 2011) of size *M* is a permutation of the integers from 1 through M such that its permutation matrix contains no equal displacement vectors between distinct pairs of distinct elements.

4 2 1 5 3 6	$1 \ 2 \ 3 \ 4 \ 6 \ 5$	$3\ 2\ 4\ 6\ 1\ 5$	$2 \ 5 \ 3 \ 4 \ 1 \ 6$
0 0 1 0 0 0	1, 0, 0, 0, 0, 0	0 0 0 0 1 0	0 0 0 0 1 0
0 1 0 0 0 0	0 1 0 0 0 0	0 1 0 0 0 0	$1 \ 0 \ 0 \ 0 \ 0 \ 0$
$0/0 \ 0 \ 0 \ 1 \ 0$	0 0 1 0 0 0	$1 0 \setminus 0 0 0 0$	0 0 1 0 0 0
$1_0 0 0 0 0$	0 0 0 1 0 0	0 0 1 0 0 0	0 0 0 1 0 0
$0 \ 0 \ 0 \ 1 \ 0 \ 0$	$0 \ 0 \ 0 \ 0 \ 0 \ 1$	$0 \ 0 \ 0 \ 0 \ 1$	0 1 0 0 0 0
0 0 0 0 0 1	$0 \ 0 \ 0 \ 0 \ 1 \ 0$	$0 0 0 \mathbf{\hat{1}} 0 0$	0 0 0 0 0 1
A	В	C	D

Figure 1: Three permutations (*A*, *B*, and *C*) that violate the Costas-array property and one (*D*) that satisfies it.

The constraint-satisfaction problem of searching for Costas arrays of size *M* can be formally defined as

 $\langle \{x_1,\ldots,x_M\},\{1,\ldots,M\},$ $\{ \langle i \mapsto x_i, \{t : \forall i, j (t(i) = t(j) \to i = j) \} \rangle,$ $\langle i \mapsto x_i, \{t : \forall i, j, k, l \ (i \neq j \land i \neq k \to j - i \neq l - k \lor t(j) - t(i) \neq t(l) - t(k))\} \rangle$

For $M \ge 30$, it is not in general known whether a solution to the Costas-array problem exists; the problem for a given size *M* is solved if a solution is found.

Definition 3. If a parallel program with *N* workers solves a problem in *T* time and the same program with one worker solves the problem in T₀ time, the *speedup* S and *efficiency* E of the program for that problem are

S = -

www.PosterPresentations.com

$$E = \frac{S}{N} = \frac{T_0}{N \cdot T}$$

Parallel MAX - MIN Ant System for combinatorial constraint-satisfaction problems

David Vulakh¹, Raphael Finkel²

¹Math, Science, and Technology Center, Paul Laurence Dunbar High School, Lexington, KY 40513 ²Department of Computer Science, University of Kentucky, Lexington, KY 40506

DESIGN GOAL AND METHODS

Because general CSP solvers run in exponential time, the runtime of programs solving combinatorial CSPs grows rapidly. The goal of the project was to create a parallelized and heuristic-accelerated MMAS framework that:

- Distributes work to local processors to solve the Costas-array problem
- Maintains high efficiency (E > 0.5) at high numbers of workers (up to N = 250)
- Exhibits lower average time-to-first solution with the new optimizations than without.

A detailed description of the research process can be found in the accompanying journal.

called pheromones (Fig. 2).

Figure 2: A diagram of ant-foraging behavior. Initially, ants follow random paths. Over time, better paths acquire higher concentrations of pheromone, and all ants are drawn to a single optimal path. Image taken from http://mutenet.sourceforge.net/howAnts.shtml

ACO algorithms (Dorigo & Di Caro, 1999) are based on the behavior of foraging ants, which indirectly communicate with each other by secreting and detecting chemicals

- In order to apply ACO to an optimization problem, the problem is represented as a graph connecting domain values called the *construction graph*.
- Processes called ants stochastically traverse this graph, altering the properties that govern ant behavior.

 $\mathcal{M}\mathcal{M}$ AS was applied to the problem of Costas arrays as follows:

- Paths through the construction graph represent permutations.
- The *cost* of a path is the number of Costas-array-property violations.
- The *heuristic value* η_{si} associated with adding *i* to permutation *s* is inversely proportional to the cost incurred.
- The *pheromone value* τ_{si} is based on the learned favorability of following *s* with *i*.
- The probability that an ant will add *i* to permutation *s* is based on a function of η_{si} and τ_{si} , the *ant-routing table* A_{si} .

Figure 4: Path representation of permutations for pheromone association. (A) Pheromone is applied to all five unique subsequences of the permutation (1,3,2,4); clockwise from top left (+1,-2), (+1), (-2), (-2,+1,-2), (-2,+1). (B) All suffixes of the permutation (4, 2, 1, 3) are considered when computing the ant-routing table A_{s3} at s = (4, 2, 1); from left to right (+2, +1, -2), (+1, -2), (-2).

• The queen applies pheromone to all subsequences of the best paths found (Fig. 4A).

• The amount of pheromone applied to a path's subsequences is inversely proportional to that path's cost.

The construction graph supports parallel querying of pheromone values to compute the ant-routing table \mathcal{A} .

• As a new optimization, the construction graph uses the longest suffix encountered when determining pheromone values (Fig. 4B).

used:

The design process started with the implementation of a singlethreaded *MMAS* solver for Costas arrays. Over the course of several months, this solver was parallelized and new optimizations, such as map-based pheromone storage, were developed. Two languages were

• C++ for the *MMAS* framework

• Java for the visualizer program

No libraries outside the C++17 STL and Java standard were used.

The ant system was tested on a machine with 256 identical Xeon Phi Knight's Landing processors.

A discussion of the techniques used to apply MMAS to the Costasarray problem and the new optimizations added follows.

FRAMEWORK DESIGN

Figure 3: A high-level schematic of the parallel *MMAS* framework. Purple arrows indicate the flow of information through the system; green ones indicate the flow of control.

The *MMAS* framework includes two types of processes that run in parallel and indirectly communicate with each other through two shared data structures (Fig. 3).

Some number *N* of parallel worker ants repeatedly traverse the construction graph, constructing paths that represent possible solutions. • Worker ants construct paths stochastically, favoring paths with high heuristic and pheromone values.

• The best (lowest-cost) paths are inserted into a shared list.

• As a new optimization, ants constructing a path the cost of which exceeds the cost of the best path found by a *quality threshold* ϑ abandon the path and immediately start a new one.

A single queen process periodically updates pheromone values.

• The queen operates based on ant time periods called epochs; over one epoch, each ant constructs a set number of paths.

Simplified visualizations of the evolution of the pheromone graph over the course of \mathcal{MMAS} Costas-array searches show that the final solution found by the ants utilizes high-pheromone components of non-Costas array permutations (Fig. 5).

Figure 5: Visualizations of the 2D pheromone graph for an $M = 14 \mathcal{MMAS}$ Costas-array search. From left to right, the state of the graph at time t = 5, t = 15, t = 30, t = 45, t = 60, t = 75, and t = 90 (in ant epochs). The color of a cell in the *i*th row and *j*th column represents the learned favorability of following *i* with *j* in a Costas-array candidate, with darker cells indicating higher pheromone concentration and lighter cells representing lower pheromone concentration.

Figure 6: Graphs of \mathcal{MMAS} performance. (A) A graph of median E (as a ratio of times-to-firstsolution) with respect to N and M (n = 100). Error bars represent the first and third quartiles. (B) A graph of decrease in average time-to-first-solution after new optimizations were added.

• For $N \ge 200$, $E \approx 0.6$ for all $M \ge 14$, implying that an efficiency of ~0.6 is likely to extend for greater worker counts and problem sizes.

Fig. 6B indicates that the new optimizations generally improve $\mathcal{M}\mathcal{M}AS$ time-to-first-solution.

• New optimizations are most effective at larger problem sizes and processor counts; for N = 250 and $M \ge 14$, the new optimizations cause a $\sim 30\%$ runtime decrease.

The performance data collected indicate that the *MMAS* framework developed satisfies the project goals:

• *MM* AS maintains an approximately constant high efficiency across several larger processor counts and problem sizes, indicating that *E* is likely to remain above 0.5 even for larger *M* and N.

• The optimizations decrease average *MMAS* time-to-first solution by a significant margin (~30%).

• Application of distributed computing techniques to pool the computational power of multiple machines without shared memory.

• Application of *MMAS* to unsolved problem instances (namely, the search for M = 32 Costas arrays).

VISUALIZATIONS

Fig. 6A indicates that, for $M \ge 14$, $E \ge 0.5$ for all values of N tested.

• For *N* < 200, *E* varies with *M* and decreases as *N* increases.

• For N > 1, \mathcal{MMAS} with the new optimizations is consistently faster than \mathcal{MMAS} without (exception: N = 150, M = 13).

DISCUSSION

Future goals for the *MMAS* program include:

WORKS CITED

Bulatov, A. A., Krokhin, A. A., & Jeavons, P. (2000). Constraint satisfaction problems and finite algebras. [Proceedings]. In International colloquium on automata, languages, and programming (pp. 272–282). Retrieved from

https://link.springer.com/chapter/10.1007/3-540-45022-X24 Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. [Proceedings]. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (cat. no.99th8406) (Vol. 2, pp. 1470–1477). Retrieved from http://staff.washington.edu/paymana/swarm/dorigo99-cec.pdf

Drakakis, K. (2011). Open problems in Costas arrays. arXiv preprint arXiv:1102.5727. Retrieved from

https://arxiv.org/pdf/1102.5727.pdf Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River, NJ, USA: Prentice Hall Press. Stützle, T., & Hoos, H. H. (2000). Max-min ant system. Future Generation Computer Systems, 16(8), 889–914. Retrieved from https://www.sciencedirect.com/science/article/pii/S0167739X00000431 All unattributed figures produced by student.