
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Many mathematical and practical problems require elements of a set
to be arranged in a way that satisfies specific conditions. Familiar
examples include Sudoku, timetabling, scheduling, and resource
distribution (Russell & Norvig, 2009). Such problems, called
constraint-satisfaction problems (CSPs), are solved when values from
a domain are assigned to variables in a way that does not violate a
set of constraints. Because some CSPs are NP-complete (Bulatov,
Krokhin, & Jeavons, 2000), no polynomial-time algorithm to solve
the general constraint-satisfaction problem is known. In order to
reduce the time required to solve large instances, an Ant Colony
Optimization (ACO) algorithm called the ℳ𝒜𝒳 −ℳℐ𝒩 Ant System
(ℳℳAS) (Stützle & Hoos, 2000) was applied to combinatorial CSPs
with focus on a specific CSP (the Costas-array problem, which
remains open for most sizes 𝑀 ≥ 30).

INTRODUCTION

BACKGROUND

Because general CSP solvers run in exponential time, the runtime of
programs solving combinatorial CSPs grows rapidly. The goal of the
project was to create a parallelized and heuristic-accelerated ℳℳAS
framework that:

• Distributes work to local processors to solve the Costas-array
problem

• Maintains high efficiency (𝐸 > 0.5) at high numbers of workers (up to
𝑁 = 250)

• Exhibits lower average time-to-first solution with the new
optimizations than without.

A detailed description of the research process can be found in the
accompanying journal.

DESIGN GOAL AND METHODS VISUALIZATIONS

RESULTS

Definition 1. A constraint-satisfaction problem (CSP) (Bulatov et al.,

2000) is an ordered triple 𝑉,𝐷, 𝐶 , where

• 𝑉 is the set of variables

• 𝐷 is the domain

• 𝐶 is the set of constraints

Each constraint 𝐶𝑖 is of the form 𝑠𝑖 , 𝜌𝑖 , where 𝑠𝑖 describes a tuple of

variables 𝑠𝑖 ∶ 1, . . . , 𝑚𝑖 → 𝑉 and 𝜌𝑖 is an 𝑚𝑖-ary Boolean relation on

𝐷, 𝜌𝑖 ⊆ 𝐷𝑚𝑖

A solution of the constraint-satisfaction problem 𝑉, 𝐷, 𝐶 is a

function 𝑓 ∶ 𝑉 → 𝐷 such that for all constraints 𝐶𝑖 = 𝑠𝑖 , 𝜌𝑖 , 𝑓 ∘ 𝑠𝑖 ∈ 𝜌𝑖

Definition 2. A Costas array (Drakakis, 2011) of size 𝑀 is a

permutation of the integers from 1 through 𝑀 such that its

permutation matrix contains no equal displacement vectors between

distinct pairs of distinct elements.

The constraint-satisfaction problem of searching for Costas arrays of

size 𝑀 can be formally defined as

For 𝑀 ≥ 30, it is not in general known whether a solution to the

Costas-array problem exists; the problem for a given size 𝑀 is solved

if a solution is found.

Definition 3. If a parallel program with 𝑁 workers solves a problem

in 𝑇 time and the same program with one worker solves the problem

in 𝑇0 time, the speedup 𝑆 and efficiency 𝐸 of the program for that

problem are

𝑆 =
𝑇0
𝑇

𝐸 =
𝑆

𝑁
=

𝑇0
𝑁 ∙ 𝑇

David Vulakh¹, Raphael Finkel²
¹Math, Science, and Technology Center, Paul Laurence Dunbar High School, Lexington, KY 40513

²Department of Computer Science, University of Kentucky, Lexington, KY 40506

Parallel ℳ𝒜𝒳 −ℳℐ𝒩 Ant System
for combinatorial constraint-satisfaction problems

The design process started with the implementation of a single-
threaded ℳℳAS solver for Costas arrays. Over the course of several
months, this solver was parallelized and new optimizations, such as
map-based pheromone storage, were developed. Two languages were
used:

• C++ for the ℳℳAS framework

• Java for the visualizer program

No libraries outside the C++17 STL and Java standard were used.

The ant system was tested on a machine with 256 identical Xeon Phi
Knight’s Landing processors.

A discussion of the techniques used to apply ℳℳAS to the Costas-
array problem and the new optimizations added follows.

FRAMEWORK DESIGN

The ℳℳAS framework includes two types of processes that run in
parallel and indirectly communicate with each other through two
shared data structures (Fig. 3).

Some number 𝑁 of parallel worker ants repeatedly traverse the
construction graph, constructing paths that represent possible solutions.

• Worker ants construct paths stochastically, favoring paths with high
heuristic and pheromone values.

• The best (lowest-cost) paths are inserted into a shared list.

• As a new optimization, ants constructing a path the cost of which
exceeds the cost of the best path found by a quality threshold 𝜗
abandon the path and immediately start a new one.

A single queen process periodically updates pheromone values.

• The queen operates based on ant time periods called epochs; over
one epoch, each ant constructs a set number of paths.

• The queen applies pheromone to all subsequences of the best paths
found (Fig. 4A).

• The amount of pheromone applied to a path’s subsequences is
inversely proportional to that path’s cost.

The construction graph supports parallel querying of pheromone
values to compute the ant-routing table 𝒜.

• As a new optimization, the construction graph uses the longest suffix
encountered when determining pheromone values (Fig. 4B).

Figure 3: A high-level schematic of the parallel ℳℳAS framework. Purple arrows indicate the
flow of information through the system; green ones indicate the flow of control.

Simplified visualizations of the evolution of the pheromone graph
over the course of ℳℳAS Costas-array searches show that the final
solution found by the ants utilizes high-pheromone components of
non-Costas array permutations (Fig. 5).

Fig. 6A indicates that, for 𝑀 ≥ 14, 𝐸 ≥ 0.5 for all values of 𝑁 tested.

• For 𝑁 < 200, 𝐸 varies with 𝑀 and decreases as 𝑁 increases.

• For 𝑁 ≥ 200, 𝐸 ≈ 0.6 for all 𝑀 ≥ 14, implying that an efficiency of
~0.6 is likely to extend for greater worker counts and problem
sizes.

Fig. 6B indicates that the new optimizations generally improve
ℳℳAS time-to-first-solution.

• For 𝑁 > 1, ℳℳAS with the new optimizations is consistently
faster than ℳℳAS without (exception: 𝑁 = 150,𝑀 = 13).

• New optimizations are most effective at larger problem sizes and
processor counts; for 𝑁 = 250 and 𝑀 ≥ 14, the new optimizations
cause a ~30% runtime decrease.

Figure 6: Graphs of ℳℳAS performance. (A) A graph of median 𝐸 (as a ratio of times-to-first-
solution) with respect to 𝑁 and 𝑀 (𝑛 = 100). Error bars represent the first and third quartiles.
(B) A graph of decrease in average time-to-first-solution after new optimizations were added.

WORKS CITED
Bulatov, A. A., Krokhin, A. A., & Jeavons, P. (2000). Constraint satisfaction problems and finite algebras. [Proceedings]. In 

International colloquium on automata, languages, and programming (pp. 272–282). Retrieved from 
https://link.springer.com/chapter/10.1007/3-540-45022-X24

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. [Proceedings]. In Proceedings of the 1999 congress on 
evolutionary computation-CEC99 (cat. no.99th8406) (Vol. 2, pp. 1470–1477). Retrieved from 
http://staff.washington.edu/paymana/swarm/dorigo99-cec.pdf

Drakakis, K. (2011). Open problems in Costas arrays. arXiv preprint arXiv:1102.5727. Retrieved from 
https://arxiv.org/pdf/1102.5727.pdf

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River, NJ, USA: Prentice Hall Press.
Stützle, T., & Hoos, H. H. (2000). Max–min ant system. Future Generation Computer Systems, 16(8), 889–914. Retrieved from 

https://www.sciencedirect.com/science/article/pii/S0167739X00000431
All unattributed figures produced by student.

Figure 1: Three permutations (𝐴, 𝐵, and 𝐶) that violate the Costas-array property and one (𝐷)
that satisfies it.

Figure 2: A diagram of ant-foraging
behavior. Initially, ants follow
random paths. Over time, better
paths acquire higher concentrations
of pheromone, and all ants are
drawn to a single optimal path.

Image taken from http://mute-
net.sourceforge.net/howAnts.shtml

ACO algorithms (Dorigo & Di Caro, 1999)
are based on the behavior of foraging ants,
which indirectly communicate with each
other by secreting and detecting chemicals
called pheromones (Fig. 2).

• In order to apply ACO to an optimization
problem, the problem is represented as a
graph connecting domain values called
the construction graph.

• Processes called ants stochastically
traverse this graph, altering the
properties that govern ant behavior.

ℳℳAS was applied to the problem of
Costas arrays as follows:

• Paths through the construction graph
represent permutations.

• The cost of a path is the number of
Costas-array-property violations.

• The heuristic value 𝜂𝑠𝑖 associated with
adding 𝑖 to permutation 𝑠 is inversely
proportional to the cost incurred.

• The pheromone value 𝜏𝑠𝑖 is based on the
learned favorability of following 𝑠 with 𝑖.

• The probability that an ant will add 𝑖 to
permutation 𝑠 is based on a function of
𝜂𝑠𝑖 and 𝜏𝑠𝑖, the ant-routing table𝒜𝑠𝑖.

Figure 4: Path representation of permutations for pheromone association.
(A) Pheromone is applied to all five unique subsequences of the permutation
1, 3, 2, 4 ; clockwise from top left (+1,−2), (+1), (−2), (−2,+1,−2), (−2,+1).

(B) All suffixes of the permutation (4, 2, 1, 3) are considered when computing the
ant-routing table 𝒜𝑠3 at 𝑠 = (4, 2, 1); from left to right (+2,+1,−2), (+1,−2), (−2).

A. B.

Figure 5: Visualizations of the 2D pheromone graph for an 𝑀 = 14 ℳℳAS Costas-array search.
From left to right, the state of the graph at time 𝑡 = 5, 𝑡 = 15, 𝑡 = 30, 𝑡 = 45, 𝑡 = 60, 𝑡 = 75, and
𝑡 = 90 (in ant epochs). The color of a cell in the 𝑖ᵗʰ row and 𝑗ᵗʰ column represents the learned
favorability of following 𝑖 with 𝑗 in a Costas-array candidate, with darker cells indicating higher
pheromone concentration and lighter cells representing lower pheromone concentration.

DISCUSSION
The performance data collected indicate that the ℳℳAS framework
developed satisfies the project goals:

• ℳℳAS maintains an approximately constant high efficiency
across several larger processor counts and problem sizes,
indicating that 𝐸 is likely to remain above 0.5 even for larger 𝑀
and 𝑁.

• The optimizations decrease average ℳℳAS time-to-first solution
by a significant margin (~30%).

Future goals for the ℳℳAS program include:

• Application of distributed computing techniques to pool the
computational power of multiple machines without shared
memory.

• Application of ℳℳAS to unsolved problem instances (namely,
the search for 𝑀 = 32 Costas arrays).


