
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Many mathematical and practical problems require elements of a set to be

arranged in a way that satisfies specific conditions. Familiar examples

include Sudoku, timetabling, scheduling, and resource distribution (for

example, floor planning). (Stanford, 2011) Such problems, called

constraint-satisfaction problems, are solved when values from a domain are

assigned to variables in a way that does not violate a set of constraints.

Solutions to constraint-satisfaction problems with a finite number of

variables and finite domains can be found with the generalizable algorithm

of recursive search with backtracking, which runs in nondeterministic

polynomial time (Stanford, 2011). In order to complete large cases quickly,

the computational resources of multiple cores and machines can be pooled.

Project Goal: Develop a general backtracking framework that accelerates

the search for solutions to any given combinatorial constraint-satisfaction

problem by distributing work to local and remote processors.

INTRODUCTION

BACKGROUND

The goal of the project was to create a distributed backtracking program that:

• Solves constraint-satisfaction problems

• Distributes work over multiple local and remote processor cores

• Produces files for restarting without loss of work and visualizing search

statistics

• Solves the problem of Costas Arrays with 𝐸 ≥ 1

The engineering design started with a simple, local distributed commander.

Over the course of several months, this commander was debugged, optimized,

and expanded to produce and read restart files. After several weeks of

continuous testing on large cases (through size 𝑀 = 18), a new version of the

program that distributes work over the internet was developed. A detailed

description of the research process can be found in the accompanying journal.

DESIGN GOAL AND METHODS VISUALIZATIONS

DATA AND CONCLUSIONS

A Constraint-Satisfaction Problem is defined by the triple of sets 𝑋, 𝐷, 𝐶

• 𝑋 = 𝑋1, … , 𝑋𝑛 is the set of variables

• 𝐷 = 𝐷1, … , 𝐷𝑛 is the set of the respective domains of the variables in 𝑋

• 𝐶 = 𝐶1, … , 𝐶𝑚 is the set of constraints

• Each constraint 𝐶𝑗 is defined as a pair 𝑡𝑗 , 𝑅𝑗

• 𝑡𝑗 ⊆ 𝑋 is a subset of 𝑘 of the variables in 𝑋

• 𝑅𝑗 is a Boolean relation of those 𝑘 variables on the corresponding

domains

• An evaluation of the variables is a function from a subset of variables to

values in their respective domains. An evaluation:

• satisfies constraint 𝐶𝑗 iff the values assigned to the variables in 𝑡𝑗
satisfy 𝑅𝑗

• is consistent iff it satisfies all constraints in 𝐶

• is complete iff it includes all variables in 𝑋

• is a solution iff it is consistent and complete

(Berkley, n.d.)

A Costas Array of size 𝑀 is a permutation of the integers from 1 to 𝑀 the

binary permutation matrix of which contains no equal displacement vectors

between pairs of distinct elements (Drakakis, 2010). It is formally described

by the constraint-satisfaction problem

If a distributed program with 𝑁 workers solves a constraint-satisfaction

problem in 𝑇 time and a single worker solves it in 𝑇0 time, the speedup 𝑆
and efficiency 𝐸 of the program for that problem are

𝑆 =
𝑇0
𝑇

𝐸 =
𝑆

𝑁
=

𝑇0
𝑁𝑇

If a distributed program with 𝑁 workers solves a constraint-satisfaction

problem in 𝑇 time and the workers consume total Σ𝑇 time, the absolute

overhead 𝐻 and relative overhead 𝐻𝑅 are

𝐻 = 𝑇 −
Σ𝑇

𝑁
𝐻𝑅 =

𝐻

𝑇
= 1 −

Σ𝑇

𝑁𝑇

The performance of a distributed program is considered optimal if 𝐸 ≥ 1
and 𝐻𝑅 = 0. In this case, the program does not consume more resources in

solving a problem than do its workers or than would a single worker solving

the problem independently.

David Vulakh

General Distributed Backtracking Framework

for Solving Combinatorial Constraint-Satisfaction Problems

Four programming languages were utilized to accomplish the design goal:

• Go was used for the commander program

• clingo, an ASP language, was used for the worker unit

• Perl was used in a post-processor to interpret the clingo output

• Java was used to generate visualizations from the restart files produced by

the Go commander

These programs have been run on four computers:

• A personal computer with 4 cores

• A university-operated machine with 8 cores

• A university-operated machine with 80 cores

• A university-operated machine with 256 cores

FRAMEWORK DESIGN

Figure 1: A schematic of the information flow through the

single-machine, multi-thread implementation of the commander.

Figure 2 depicts the flow of information through the internet commander

framework, which is composed from a hierarchy of commander frameworks

• Each commander internally resolves the distribution of work as discussed to

the left.

• Commanders located on client machines initiate a TCP connection to the

server to request work.

• Parallel request handlers read from the dispatchChan of the server

commander in the place of worker threads and send assignments to the

subordinate commanders, which use the available cores of their respective

client machines to solve the subproblems assigned to them.

• When a client commander finishes its subproblem, it initiates another TCP

connection to the server and sends the search results to the main

commander.

• The results are read by a request handler, encapsulated in a returnInfo

structure, and pushed onto the reportChan.

• After the connection is severed, the client restarts and sends another request

for work.

The server commander keeps a failsafe map of the worker IDs to which any

given uncompleted assignment has been dispatched. The map allows the

commander to redispatch assignments that are taking an unexpectedly long

time to complete (perhaps because of a crash on one of the client machines)

and detect and discard duplicately submitted answers.

Figure 2: A schematic of the information flow through the hierarchical, multi-machine implementation of the commander.

Figure 3: Visualizations of solution density at various depths of the search tree for Costas Arrays of size

𝑀 = 16. From left to right: solution density at depth 1, 2, 3, 4.

The visualizations in Figure 3 display the number of solutions found in

subtrees of an 𝑀 = 16 Costas Array search at various depths. The gradient

of solutions found across all visualized subtrees is mapped to the color

spectrum (from red as the minimum to blue as the maximum). A subtree

defined by permutation 𝑃 with last element 𝑣 for 𝑀 = 𝑅 × 𝐶 (for 𝑀 = 16,

𝑀 = 4 × 4 was used) is positioned in the 𝑣th cell of the rectangle of its

parent permutation in the search tree, where the upper-left corner is cell 1
and numbering continues to the right and down. Invalid nodes (such as the

upper left corner in all generations past 1, which represents a permutation

starting with 1,1…) are left gray.

Figure 1 displays the flow of information through the single-machine multi-

thread implementation of the commander framework.

• The search begins with the launch() method of the commander object,

which constructs an initial set of assignments and passes it to start

collectors.

• These collectors break initial assignments into smaller subtrees and add

them to the assignment queue to be searched by workers.

• A parallel dispatcher thread empties the arbitrary-length assignment queue

into the static-size dispatchChan, which is read by worker threads. This

intermediate dispatcher thread allows the start collectors to continue the

DFS of the search tree while the dispatch channel is blocked.

• When a worker receives an assignment through the dispatch channel, it calls

the clingo program and Perl post-processors to search the subtree defined by

the assignment.

• Information about the results of the search (number of solutions found, exit

status, runtime) is encapsulated in a returnInfo structure and pushed onto

reportChan.

• The main loop empties reportChan into collector threads, which add

solutions from completed searches to the total and enqueue the assignment

node's children if the clingo program was killed by the --time flag.

These parallel processes are monitored from the main loop of the launch()

method, which tracks end conditions and controls the collection of returnInfo.

Figure 4(A) indicates that 𝐻𝑅 decreases as 𝑀 increases for 𝑁 ≤ 10.

• As 𝐻𝑅 =
𝐻

𝑇
and 𝑇 increases with 𝑀, the nonlinear decrease of 𝐻𝑅 with

respect to 𝑀 implies that 𝐻 grows more slowly than 𝑇.

• The absolute overhead is dominated not by the 𝑂(𝑀!) worker calls made,

but by some slower-growing (perhaps constant startup) operations.

Figure 4(B) indicates that 𝐸 increases as 𝑀 increases for 𝑁 ≤ 10. For

sufficiently large 𝑀, 𝐸 can exceed 1 for 𝑁 = 1.

• In these cases, the commander running with one thread is faster than just

the thread by itself, leading to the conclusion that the clingo workers,

while capable of quickly traversing relatively shallow subtrees, are

significantly slower when traversing deeper ones.

• As a result, a program splitting work for the clingo program has a

‘baseline’ efficiency that results from the improved speed of the worker

on the shallower tree.

Both graphs indicate that the performance of the commander, evaluated

both through 𝐸 and 𝐻𝑅, improves as problem size increases.

• Constant or polynomial startup operations are apparently responsible for

the majority of overhead operations.

• The trend of improving performance will likely continue.

The performance data collected indicate that the designed commander

satisfies the goal of solving the problem of Costas Arrays with 𝐸 ≥ 1, as it

does so frequently for 𝑀 ≥ 9. It also satisfies the additional goals of

production of restart files and visualization of search statistics.

Figure 4: Graphs of commander performance. (A) A graph of average 𝐻𝑅 with respect to 𝑀. 𝐻𝑅 decreases

as 𝑀 increases, especially for smaller values of 𝑁. (B) A graph of average 𝐸 with respect to 𝑀. 𝐸
increases as 𝑀 increases, especially for smaller values of 𝑁.

REFERENCES
Berkley. (n.d.). Constraint Satisfaction Problems. Retrieved from http://aima.cs.berkeley.edu/newchap05.pdf

Drakakis, K. (2010). An Introduction to Costas Arrays. Retrieved from

http://www1.spms.ntu.edu.sg/~ccrg/documents/basicTalkSingapore.pdf

Stanford. (2011). Constraint Satisfaction Problems. Retrieved from https://web.stanford.edu/class/cs227/Lectures/lec14.pdf

All figures produced by student.

